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In this paper, we present the mathematical study of heat and mass transfer effects on an arterial blood flow 
under the influence of an applied magnetic field with chemical reaction. A case of mild stenosis is considered in a 
non-tapered artery which is inclined at an angle   from the axis. The variable viscosity of the blood is considered 
varying with the hematocrit ratio. Governing non-linear differential equations have been solved by using an 
analytical scheme, homotopy perturbation method to obtain the solution for the velocity, temperature and 
concentration profiles of the blood flow. For having an adequate insight to blood flow behavior through a 
stenosed artery, graphs have been plotted for wall shear stress, velocity, temperature and concentration profiles 
with varying values of the applied magnetic field, chemical reaction parameter and porosity parameter. The 
results show that in an inclined artery, the magnitude of the wall shear stress at stenosis throat increases as values 
of the applied magnetic field increase while it reduces as the values of both the chemical reaction and porosity 
parameters increase. Contour plots have been plotted to show the variations of the velocity profile of blood flow 
as the values of the height of the stenosis as well as the influence of the applied magnetic field increase.  
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1. Introduction 
 
 Blood delivers all the important substances, nutrients and oxygen from one body cell to the other 
body cells through arteries and veins. Arteries play an important role in the transportation of highly 
oxygenated blood from the heart to the other body parts. Systematic circulation of the blood all over the body 
through arteries helps to stabilize the temperature and pH scale, by providing the nourishment to the body. 
Extra deposition of fat inside the artery, constricts the arterial wall and directly affects the work function of 
the artery. The accumulation of substances in an artery is known as stenosis which changes hemodynamic 
conditions and flow patterns that were existing in the artery, early to catheterization [1], [2], [3]. This larger 
scale of coronary artery blockage causes heart attacks in the human body[4]. We deal with this type of 
biological system related problems in “Biomechanics", which studies the functions and structures of the 
living body with the help of mechanics [5]. Since it is directly related to the health of a human body, 
nowadays it has gained serious attention from researchers, physiologists, and clinical persons to study the 
arterial blood flow. In this field, Ellahi et al. [6] in their paper mathematically explained a model of arterial 
blood flow with composite Stenosis. Further, in this work, Pralhad et al. [7] presented a model for arterial 
stenosis and computed the flow variables such as shear stress and resistance for the affected wall. 
 Erythrocytes are rich in hemoglobin which is an iron-containing biomolecule. So in the presence of a 
magnetic field, red blood cells allocated in arteries show characteristics of a diamagnetic fluid [8]. A field in 
which we study the effects of the applied magnetic field on biological fluids is known as biomagnetic fluid 
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dynamics (BFD) and today it has numerous proposed applications in bioengineering and medical sciences. 
Magnetohydrodynamics (MHD) differs from BFD in the sense that it deals with electrically conducting 
fluids with the presence of an applied magnetic field [9]. In order to investigate the effects of the magnetic 
field on blood flow, Tzirtzilakis [10] proposed a mathematical model for Newtonian blood flow and 
proposed that under the strong magnetic field effect, the flow rate of the blood flow reduces up to 40% . 
Further, in the same direction, Srivastava [11] analyzed the motion of the steady blood flow in an inclined 
porous artery under the influence of an applied magnetic field and concluded that as effects of the magnetic 
field increase the velocity profile of the blood flow under given conditions shows a reverse behavior. 
 The porosity of the medium is a major characteristic of the artery for analysing the effects of 
different physical parameters on the blood flow. Considering blood as an unsteady pulsatile laminar flow of 
an incompressible non-Newtonian fluid Akbarzadeh [12] numerically simulated the velocity profile of MHD 
blood flow which flows through a porous blood vessel and found that the increasing porosity of arterial 
media reduces the velocity of the blood flow. Further, in his mathematical model, Eldesoky [13] studied the 
motion of an unsteady MHD pulsatile flow of blood through a porous medium in a stenotic channel with slip 
at permeable walls and reported that in the porous medium the velocity of blood flow decreases as the effects 
of the magnetic field parameter and depth of the stenosis height increase. Khaled and Vafai [14] proposed a 
model for heat transfer for defining the role of porosity in biological tissues. However, none of these studies 
considered the effects of variable viscosity as viscosity was assumed to be constant. 
 In blood, the fraction of packed cell volume differs from point to point. So in a real physiological 
system, the functional dependence of the blood viscosity is not constant; it may vary either with the 
hematocrit ratio or may depend upon the temperature and the pressure [15] of the artery. In this regard, 
taking functional dependence of blood viscosity on hematocrit Layak et al. [16] analyzed the movement of 
the unsteady viscous blood flow in a vascular tube with an overlapping constriction by calculating the wall 
shear stress, pressure distribution and flow rate over the artery and proposed that as the value of the 
hematocrit parameter increases the viscosity of the blood flow also increases. Further, Sinha and Misra [17] 
investigated the effects of variable viscosity with variable hematocrit on an MHD flow of blood through a 
dually stenosed artery. Makinde and Onyejekwe [18] studied the effects of heat transfer on a model of MHD 
generalized Couette flow with temperature dependent viscosity and reported that increasing the viscosity 
exponent of the blood flow increases the viscous force and slows down the motion of the fluid. 
 Recently, the study of the chemical reactions on blood has become quite interesting because of the 
quantitative prediction of blood rate. In order to analyze the effects of the chemical reaction parameter on 
blood flowing artery, Mekheimer et al. [19] presented a paper which investigates the influence of the 
chemical reaction parameter on the blood flow through a tapered artery having overlapped stenosis. Akbar 
[20] studied the effects of chemical reaction on the hyperbolic tangent fluid model of the blood flow in a 
tapered artery with stenosis. By treating blood as a second-grade fluid, Misra and Adhikary [21] presented a 
model to study the effects of both heat and mass transfer on the oscillatory MHD flow of blood under the 
influence of chemical reaction. 
 However, the effects of both heat and mass transfer on MHD blood flow of having variable viscosity 
with chemical reaction have received little attention in the literature. Hence, the present article with the help 
of governing non-linear partial differential equations analyzes the combined effects of heat and mass transfer 
on a Newtonian, steady, incompressible fluid flow. The analytical technique homotopy perturbation method 
[22] has been used to obtain the solutions for the wall shear stress, velocity, temperature and concentration of 
the blood flow. Their respective graphs have been plotted for different values of the physical parameters of 
the problem. 
 
2. The mathematical model 
 
 Let us consider a two-dimensional flow of blood through a porous stenosed artery of length L , 
inclined at an angle   from the vertical axis. The flow is assumed to be axially symmetric, incompressible, 
biomagnetic, Newtonian fluid. Under the fully developed boundary conditions, the flow is subject to a 
uniform magnetic field applied just perpendicular to the direction of the inclined artery as displayed in Fig.1. 
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The viscosity of the blood is assumed to vary in a radial direction with a variable hematocrit of density  . 

The shape of the artery is assumed to be cylindrical in which u  v  and w  represent the velocity components 
in r ,   and z  directions, respectively. Under these assumptions the governing equations of the blood flow 
are as follows 
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where  0L C C  is the factor of the chemical reaction parameter. The meaning of other symbols appearing 

in the equations have been listed in the nomenclature. 
The variable viscosity  r  of the blood flow is defined as  

 
     0r = 1 h r     (2.6) 

where  
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     
   

 , (2.7) 

 
assume that = rH H , H  denotes the maximum hematocrit at the center of the artery,   is a constant 

which has a numerical value 2.5, m  determines the exact shape of the velocity profile and rH  is the 
hematocrit parameter.  
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 Fig.1. Geometry of the inclined artery with perpendicular applied magnetic field ( M ). 
   

 The geometry of the stenosis, located at a point z  with its maximum height of  , is defined by the 
formula [23]  
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where ( )d z  is the radius of the tapered artery in the stenotic region with  

  
   0d z = d z  , (2.9) 

  
in which 0d  represents the radius of the non-tapered artery and   is the tapering parameter which defines by 

= tan( )  , where   is known as the tapered angle.   possess values just lower than zero  < 0  for the 

case of converging tapered artery, for diverging tapered artery it takes the value greater than zero  > 0  

and the case of the nontapered artery   has a zero value. 

 In Eq.(2.10),   is defined by  
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where *  is the maximum height of the stenosis located at  
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and n  is the shape parameter which determines the shape of the constriction profile. Value n = 2  results the 
symmetrically shaped stenosis and non-symmetric stenosis occurs for n 2  values.  
 Now the nondimensional parameters are as follows  
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 The viscosity of the blood flow as given in Eq.(2.6) can be written in a non-dimensional form as  
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Now, Eq.(2.1) to Eq.(2.5) change in a given nondimensional form, respectively, as  
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where Br Ec Pr=  known as the Brinkman number which is the ratio of viscous heat generation to external 

heating and E  is the chemical reaction parameter. 
 The corresponding boundary conditions are as follows 
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where ( )h z  is the geometry of the stenosis in a non-dimensional form when the radius of the artery is of unit 
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3. Solution 

 
Now applying the homotopy perturbation method (HPM) to solve nonlinear differential Eqs (2.15)-

(2.19) under the given boundary conditions Eqs (2.20)-(2.21). In HPM, homotopies for velocity, temperature 
and concentration profiles are as follows  
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where L  is the linear operator defined as  
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 The initial guesses which satisfy the corresponding boundary conditions (Eqs (2.20)-(2.21)) are 
given as 
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 Dependent variables can be decomposed in a series form as follows 
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 Substituting the series expansion form of ( , )w r q , ( , )r q , ( , )r q  from Eqs (3.8)-(3.10) into Eqs 

(3.11)-(3.3) respectively, we compare the coefficients of 0q , 1q and 2q . 

 For Eq.(3.12) coefficients of 0q , 1q and 2q  are as follows 
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 Similarly, for Eq.(3.2), coefficients of 0q , 1q  and 2q  are as follows 
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 For Eq.(3.3), coefficients of 0q , 1q  and 2q  are as follows 
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 After getting the expressions for, 1  and 1   by following the same steps, we further calculate the 

values of 2w , 2  and 2  with the help of MATLAB-2015b. We get final expressions for velocity, 
temperature and concentration profiles of the blood flow by putting the values of all the calculated variables 
in Eqs (3.8)-(3.10, respectively.  
 
4. Results and discussions 
 

The motivation behind the research is to analyze the effects of heat and mass transfer on the blood 
flow through an inclined stenosed artery under the influence of the applied magnetic field with chemical 
reaction. A list of all the parameters used to graphically analyze the validity of the mathematical model is 
given in Tab.1, where the value of the height of the stenosis (  ) is considered 0.1  for the case of mild 
stenosis.  
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Fig.2. Comparision result of variation of velocity profile for a Newtonian model of blood flow 
 

Table 1. Values of the parameters. 
 

Parameters Values(Unit free)    Source 
The height of the stenosis (  )   0.1    [11], [24] 

The inclination angle of the artery (  )  
 
6


  

[25], [26] 

Porosity parameter ( Z )   0.3    [27] 
Chemical reaction parameter ( E )   1   [28] 

Shape parameter for symmetric case( n )   2   [29], [23] 
Grashof Number (Gr)   2   [30] 

Modified Grashof Number ( mG )   3   [30] 

Brinkaman number (Br)  2   [31]  
Hematocrit parameter ( rH )   1   [32]  

Magnetic field parameter ( M )   1.5   [33], [34]  
Schmidt number (Sc)   1  [31]  

Soret number (Sr)   0.5  [31] 

Ratio of 
a

b
  1l   

 0 [29] 

Location of the maximum height of the stenosis  0.5  [29] 
 

Considering the case of mild stenosis Fig.2 provides result of a comparison between the present study and those 
reported in Misra and Shit [35] and in Misra and Kar [36] for the Newtonian fluid model of the blood flow. The 
present result shows a good agreement with those published by Misra and Shit and in Misra and Kar. 

All the graphs are plotted for the range of 0  to 0.9  by assuming a non-stretching stenotic wall of the 
artery (as the value of the height of the stenosis for mild stenosis case is assumed as 0.1 ). All the figures 
have been plotted by using the parameters values as given in Tab.1. Figure 3 and Fig.4 display the radial 
variation of velocity and temperature profiles for different values of the inclination angle (  ), made by the 
non-tapered artery from the vertical axis. The magnitude of the applied magnetic field is assumed to be same 
for each and every inclined position of the artery. It can be clearly observed from Fig.3 that as the values of 
the inclination angle of the artery increase, the velocity profile of the blood flow decreases, respectively. It 
can be clearly seen from the figure that the pattern of all velocity profiles for different inclination angles are 
similar in the sense that they show the decrease in their maxima as one moves away from the center of the 
artery and finally fall to zero at the stenotic wall. From Fig.4 it is clear that as the value of the inclination 

angle of the artery increases from 0 to 
3


, the temperature profile of the blood flow also increases. 
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Fig.3: Radial distribution of velocity profile                        Fig.4. Radial distribution of temperature profile  

      for different values of inclination angle (  ).               for different values of inclination angle (  ). 
 

         
Fig.5. Radial distribution of velocity profile                               Fig.6. Variations of the temperature profile  

for different values of magnetic field parameter.        for different values of a magnetic field parameter. 
 

 
Fig.7. Radial distribution of concentration profile for different values of magnetic field parameter. 
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 Figure 5 illustrates the radial distribution of the velocity profile of the blood flow for different values 
of the magnetic field parameter ( M ). One can notice the half-flattened parabolic velocity profile from the 
figure, which decreases as the values of the applied magnetic field increase. It happens because blood 
contains  
 

          
 
Fig.8. Radial distribution of velocity profile                         Fig.9. Radial distribution of temperature profile 
          different values of porosity parameter.                                  for different values of porosity parameter. 

 

 
 

Fig.10. Radial distribution of concentration profile for different values of porosity parameter. 
 

magnetic iron oxide particles and when blood flows under the action of the applied magnetic field, it feels a 
strong electromotive force. This effect of magnetization causes a rotational motion of charged particles and 
magnetic particles of the blood. This type of orientation in blood, form red blood cells and magnetic particles 
more suspended in the blood plasma and increase the value of blood viscosity and that directly affects the 
velocity of the blood flow. So as the value of the applied magnetic field parameter increases, Lorentz force 
which stabilizes between moving magnetic particles and the applied magnetic field opposes the motion of the 
blood flow and causes reduced velocity profile of the blood flow. The result for the velocity profile agrees 
well with the result reported by Sharma et al. [33]. The effect of the magnetic field parameter (M) on 
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temperature profile is displayed in Fig.6. It is noticed from the figure that temperature profile of the blood 
flow in an inclined artery decreases as the value of the applied magnetic field which works just perpendicular 
to the stenosed artery, increases. Figure 7 displays the effects on concentration profile of the blood flow as 
the intensity of the applied magnetic varies. From the figure it is clear that concentration profile of the blood 
flow under variable viscosity effect, decreases as the value of the applied magnetic field increases from 1 to 
3  and for a particular value of the magnetic field parameter concentration of the blood in the inclined porous 
artery decreases from the center towards the arterial wall and falls to zero at stenosis wall. 

Variations of velocity, temperature and concentration profiles of the blood flow for different values 
of the porosity parameter ( Z ) have been analyzed with the help of Fig.8, Fig.9 and Fig.10, respectively. 
Figure 8 illustrates that as the values of the porosity parameter increase, the velocity profile of the blood flow 
also increases. It shows that for a particular value of the porosity parameter, velocity attains its maximum 
value at the middle of the artery and gradually starts decreasing towards the arterial wall. The velocity profile 
with the porosity parameter shows this behavior may be because, when a fraction of the voids volume over 
the total volume increases, it can be more possible for fluid particles to move from one place to another place 
in the artery. In the inclined artery, this can be the cause of decreased velocity with an increase in the 
porosity parameter. Similarly, Fig.9 and Fig.10 illustrate that the temperature and concentration profiles of 
the blood flow in the stenosed artery also increase as the value of porosity parameter increases. 
 

              
 
Fig.11. Radial variation of velocity profile                          Fig.12. Radial variation of the temperature profile 
             for different values of stenotic height ( ).                          for different values of stenotic height ( ). 

               
 Figure 11 depicts the distribution of velocity profile of the blood flow with different sizes of the 
stenosis. It is clear from the figure that the velocity profile of the blood flow decreases as the stenosis in the 
artery increases in size. It may also be noted that the velocity profile decreases the onset of the stenosis 
towards the stenosis throat. This result is in good agreement with those reported by Misra and Shit [35]. 
Figure 12 displays the effects of the height of the stenosis (  ) on the variations of the temperature profile of 
the blood flow. It shows that the temperature profile of the blood flow increases as the value of the height of 
the stenosis increases from 0  to 0.2 . The first case where = 0  is considered to analyze the distribution of 
velocity and temperature profiles of the blood flow in the stenosed free artery. 
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Fig.13. Radial variation of concentration profile           Fig.14. Radial variation of concentration profile  

             for different values of Schmidt number (Sc).                   for different values of Soret number (Sr). 
 

 Figure 13 and Fig.14 give the variation in concentration profiles of the blood flow with r  for 
different values of the Schmidt number (Sc) and the Soret number (Sr) respectively. Under the influence of 
chemical reaction, the concentration profile of the blood flow reduces as the effects of both the Schmidt and 
Soret number increase in the stenosed artery. A similar behavior of the concentration profile with changing 
values of the Schmidt number (Sc) has been observed by Kandasamy et al. [37]. 
 
4.1. The expression for the shear stress 

 
Shear stress in arteries is defined by the force per unit area on the arterial wall and it can be calculated 

as follows  
 

   = ,rz
wS
r




  (4.1) 

 
expression for wall shear stress is 
 

   
=

= .rz
r h

wS
r

 
  

  (4.2) 

 
Figure 15 displays the variations in shear stress profiles at stenosis throat for different values of the 

chemical reaction ( E ) parameter. From the figure, it is clear that as the value of the chemical reaction 
parameter increases, shear stress at the stenosis throat of the artery reduces respectively. Further, for different 
values of the porosity and magnetic field parameters Figs 16 and 17 show the variations of the shear stress 
profile at the stenosis throat of an inclined porous artery. It can be clearly observed from these figures that as 
the values of the porosity parameter increase, the shear stress profile at the stenosis throat decreases and it 
also decreases with the increased value of the magnetic field parameter.  
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Fig.15. Variation of shear stress at the stenosis throat              Fig.16. Variation of shear stress at the stenosis throat for 
          for different values of chemical reaction parameter (E).             different values of porosity parameter (Z). 

 

 
 

Fig.17.   Variation of shear stress at the stenosis throat for different values of the magnetic field  
parameter ( M ). 

 
The expression for shearing stress at the maximum height of the stenosis i.e., shear stress at the 

stenosis throat located at
n

n 1

a 1
z =

b
n 

 , can be defined as  

 
 

 s rz h= 1
= S .


   
  (4.3) 
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Fig.18. Radial distribution of velocity profile                 Fig.19. Radial distribution of temperature profile 
       for different values of hematocrit parameter.              for different values of hematocrit parameter.     

       
 

Fig.20. Variation of the velocity profile for                   Fig.21. Variation of concentration profile for different 
              different values of chemical reaction parameter.          values of chemical reaction parameter. 

               
Figure 18 and Fig.19 are prepared to analyze the effects of the hematocrit parameter ( rH ) on 

velocity and temperature profiles of the blood flow in an inclined porous artery. Figure 18 shows that as the 
values of the hematocrit parameter increase, the velocity profile decreases, receptively. From Eq.(2.11) it is 
clear that the hematocrit ratio of the blood directly affects the viscosity of the blood flow. So as the number 
of red blood cells present in the blood volume increases, it will be relatively difficult for blood particles to 
move from one place to another place because of the higher viscosity and this results in the decreased value 
of the velocity profile of the blood flow. Figure 19 illustrates that as the values of the hematocrit parameter 
increase from 0.5  to 1.5 , the temperature profile of the blood flow decreases respectively. 

Figures 20 and 21 focus on a variation of velocity and concentration profiles of the blood flow for 
different values of the chemical reaction parameter ( E ). From Fig.20 it can be clearly observed that as the 
values of the chemical reaction parameter increase, the velocity profile also increases. Figure 21 indicates 
that as the values of the chemical reaction parameter increase, the concentration profile of the MHD blood 
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flow in an inclined porous artery increases. Further, these figures reveal that for a fixed value of the chemical 
reaction parameter, both the velocity and concentration profiles decrease as we move gradually from the 
middle of the artery towards the stenosed arterial wall.  
 
5. Contour plots 

 

 
 

Fig.22. Contour plots of velocity for different values of the height of the stenosis (  ). 
 

 
 

Fig.23. Contour plots of velocity for different values of the magnetic field parameter ( M ). 
 

Figures 22 and 23 are prepared (using the values of physical parameters as given in Tab.1) to display 
the contour plots for the variation of the velocity profile of the blood flow for different values of the height 
of the stenosis and the magnetic field parameter. In these figures, X , Y , Z  display the scale of the axial 
distance, radial distance and velocity at that point, respectively. Contours are plotted for the stenosis region 
range, z = 0.2  to z = 1.2 , in which the maximum height of stenosis is located at z = 0.7 . So as the height of 
the stenosis (  ) increases, the size of the trapped bolus also increases and slowly it slows down the flow of 
blood at the maximum height of the stenosis. Figure 23 shows that as the effects of the magnetic field 
parameter increase, the trapped bolus also increases in size which gradually reduces the velocity of the blood 
flow. As it cleared that at point ( ,0.5 0.3718 ), the value of the velocity reduces from 0.1351  to 0.06552  as 
influence of the magnetic field increases from 1 to 3.5. 

 

6. Conclusion 
 

In this investigation, effects of chemical reaction with heat and mass transfer have been analyzed on 
the blood flow of having variable viscosity through an inclined artery under the influence of applied 
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magnetic field. Governing nonlinear differential equations have been solved by using homotopy perturbation 
method under the given boundary conditions. Effects of the physical parameters used in the problem such as 
the chemical reaction parameter ( E ), porosity parameter ( Z ), Schmidt number (Sc), Soret number (Sr), 
thermal Grashof number (Gr), solutal Grashof number ( mG ), hematocrit parameter ( rH ) on velocity, 
temperature and concentration profiles have been sketched graphically. Some effective findings of the article 
are summarized below 

1.  Blood velocity in the inclined artery increases as we increase the effects of porosity and chemical 
reaction parameters while it decreases when the values of the magnetic field and hematocrit 
parameters increase. This type of controlled behavior of the velocity profile under the effects of an 
applied magnetic field can help medical staff in their surgical procedures.  

2.  Wall shear stress in the stenosed inclined artery increases with a rise in the effects of the applied 
magnetic field. So due to this effect, high magnetic field strengths may cause the condition of plaque 
rupture that can affect the body by paralyzing the concerned portion of the body.  

3.  As the value of the inclination angle of the artery made from the vertical axis increases, the velocity of 
blood flow decreases while the temperature of the artery increases.  

4.  The height of the stenosis affects the velocity and temperature profiles of the blood flow in the sense 
that as the size of the stenotic region increases both the velocity and temperature profiles of the MHD 
blood flow decrease.  

5.  The concentration profile of the blood flow increases as the magnitude of the applied magnetic field 
parameter increases while it reduces with the increased value of the porosity parameter.  

 

Nomenclature 
 

  Br  Brinkman number 
 C  concentration  
 pc   specific heat 

 Ec  Eckert number 
 Gm  solutal Grashof number 
 Gr  thermal Grashof number 
 H  maximum hematocrit at center 
 rH   hematocrit parameter 

 tk   thermal diffusion 

 M  magnetic field parameter 
 Pr  Prandtl number 
 Re  Reynolds number 
 u   velocity in the z-direction 
 Z  porosity parameter 
 v   velocity in the r-direction 
    the angle of the inclined artery 

    the height of the stenosis 
    temperature 
    viscosity 

    apered angle of the artery 

 1   electrical conductivity 
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